From Theory to Practice: Al Applications in Multiple Sectors by the Institute Mihajlo Pupin

EuroCC4SEE Workshop in Belgrade, May 21st, 2025

Katarina Stanković, MSc EE & CS Research and Development Associate <u>katarina.stankovic@pupin.rs</u>

- The Institute Mihajlo Pupin: Research and Development Powerhouse
 - Our Solutions
 - Joining Forces with EU-Based R&D Partners
- Application of Artificial Intelligence in EU projects
 - Reinforcement Learning-Based Optimization of an HVAC System
 - Non-Intrusive Load Monitoring and Energy Disaggregation
 - Surrogate Data-Driven Optimization of a Manufacturing Process
 - Other Applications

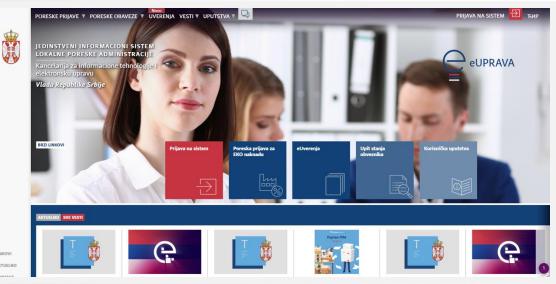
INSTITUTE MIHAJLO PUPIN

Research and Development Powerhouse

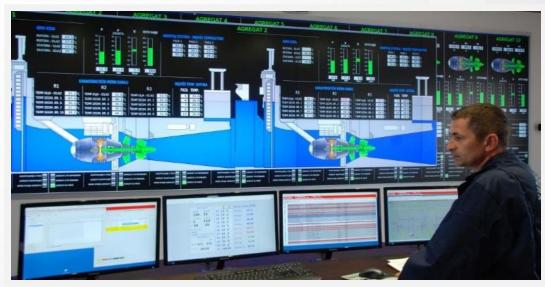
- One of the leading Serbian R&D institutions in Applied information and communication technologies (ICT)
- One of the biggest and oldest (1946) R&D institutes in the ICT area in the whole of Southeastern Europe
- 500+ employees, 350+ researchers & engineers
- Turnover 60M €.a, 80%+ via Technology Transfer
- Affiliated to the University of Belgrade
- EU Commissionaire statement:

"Pupin as the best practice example for

bridging academia and industry"



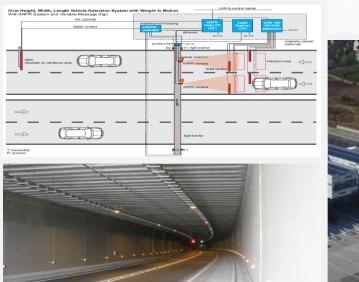
Our Solutions



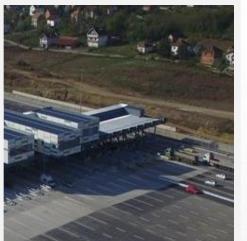
MAIN PROGRAMS

- Information Systems: E-government solutions, Document Management Systems, Decision Support Systems, AI based systems
 - Local and central tax administration,
 - Serbian Business Registry and e-portal for reports ordering, payment and delivery (one stop shop)
 - ISs for Anti-Money Laundry Agency, Ministry of Agriculture, Ministry of Justice and Ministry of Interior

- Process Control Systems: Power Production, Transmission and Dispatching Control and Supervision Systems, Water Supply and Management Systems
 - 40 years in Process Control Systems
 - Supervisory Control and Data Acquisition Systems (SCADA) and Digital Control Systems (DCS)
 - Proprietary SCADA SW (VIEW®) and HW solutions (ATLAS®)

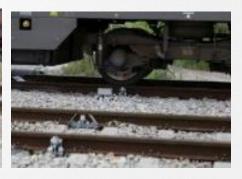


Our Solutions



MAIN PROGRAMS

- Traffic Management Systems: Urban Traffic Control, Tunnel Management, Highway Pay-Toll Systems, Parking and Access control system, Weight-in-motion detection
 - All pay-toll systems on Serbian motorways are products of R&D at IMP
 - Toll Collection systems in Serbia, Montenegro, Bosnia and Herzegovina and DR Kongo



Toll Plaza Belgrade (RS)

- Railway Program: Axle Counter, LED signals, HMI solutions
 - Universal Train-wheel Detector (UTD)
 - Train Axle Counter (BROS)
 - Universal LED module (LL-000)
 - Main, Shunting, Limit Track LED signals
 - Railway LED indicator signals
 - Railway safety HMI (MMI10)

Our Solutions

MAIN PROGRAMS

 Defense Program: Simulation and Training Systems, Air War Gaming Systems, Radar signal processing systems, Electronic Surveillance Systems, Ballistic Analyzer

Virtual reality subsystem for flight simulators SL-G4 and SL-J22

- Other Programs and Activities: Robotics, Security, Embedded Systems, Surveillance, Alert & Warning Systems, etc.
 - Pico-ITX SBC based on TI's OMAP5430 SoC
 - TI DaVinci DM8168 Qseven Module
 - STOS DVA
 - LIVIAU S

STOS DV/

Joining Forces with EU-Based R&D Partners

118 International Research Projects, over 500 partners

13 Horizon Europe (FULL-MAP, STUNNED, EUSOME, LEGOFIT, InterPED, HYCOOL-IT, STREAM IT, ECHO, FEDECOM, R2D2, IntelliLung, OMEGA-X, POLICY ANSWERS)

21 H2020 (NEON, AI-PROFICIENT, HESTIA, SINERGY, TRAPEZE, BorderUAS, PLATOON, TRINITY, IDEAS, REACT, LAMBDA, FeeelAgain, RESPOND, INBETWEEN, SlideWIKI, FLIRT, EEN INNO, FS4SMIH, EENSerbia, EENClientInnoJourney, EENInnoSJourney)

22 FP7 projects (REFLECT, AgroSENSE, META-NET, WBC-INCO-NET, HydroWEEE, ICT-WEB-PROMS, HELENA, EMILI, ENERGY WARDEN, PROCEED, LOD2, CASCADE, H-WEEE-DEMO, EPIC-HUB, SPARTACUS, GenderTIME, ResearchersNight, GeoKNOW, Danube INCO.NET, NoSQL-NET, Trafoon)

7 CIP/EIP (CESAR, EIIRC, GREEN, WEEEN, ICIP, IMAGEEN, Share PSI 2.0)

2 IPA Adrion (GoToTwin, CAROUSEL)

IPA Adriatic (PACCINO)

2 ERASMUS+ (BEST, RE-FEM)

4 SEE (Intervalue, FORSEE, WBINNO, TV-Web)

3 TEMPUS (CARE, HUTON, INCOMING)

8 COST Actions (IC1004, IC1304, CA16116, CA15104, NexusLinguarum, Distributed Knowledge Graphs, VOICES, INTERACT) **1 RSEDP2** (EMC)

2 UNDP (Smart Land, StreetAirPurifier)

3 FP6 projects (SARIB, PROMETEA, Web4WeB)

3 Interreg DANUBE (MOVECO, NewGenerationSkills, EDU-LAB)

2 EC Interreg/CADSES projects (I2E, STRIM)

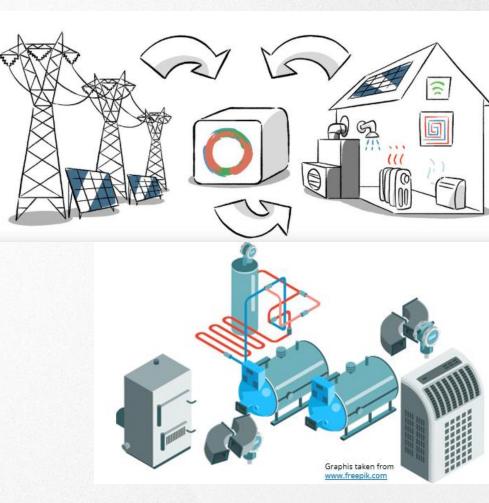
6 IPA (EPS, Tax, Justice, Agro, POM, APML)

18 Bilateral projects (2 Switzerland, 3 France, 5 Germany, 1 Cyprus, 1 Greece, 1 Norway, 1 Portugal, 1 Slovenia, 3 China)

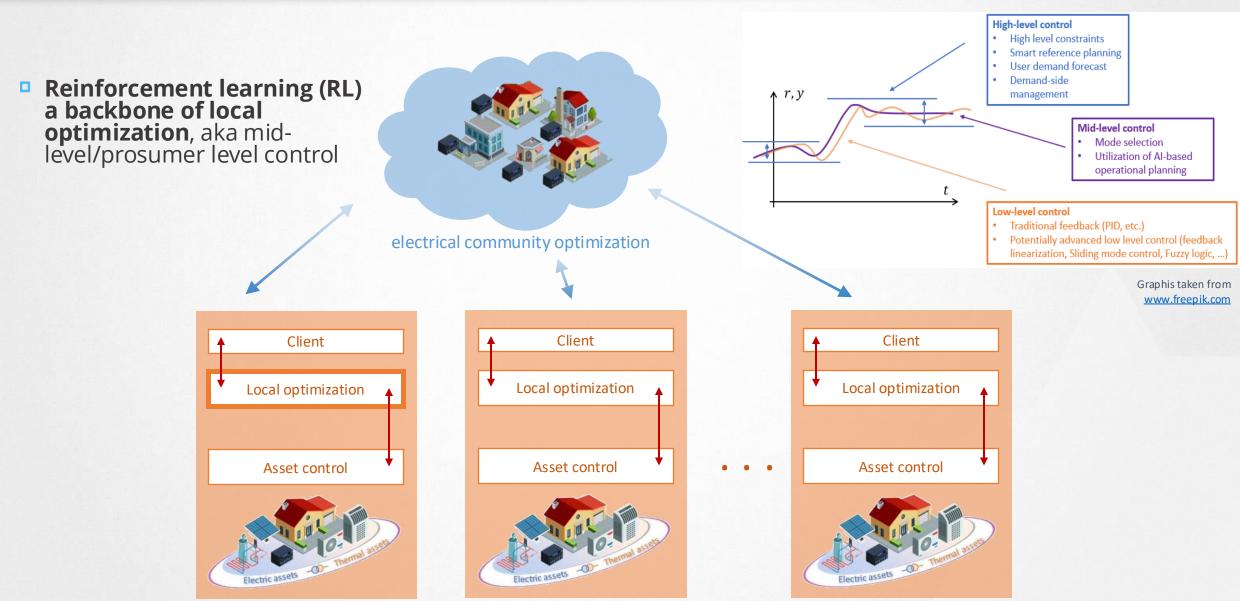
2020

PROGRAMME

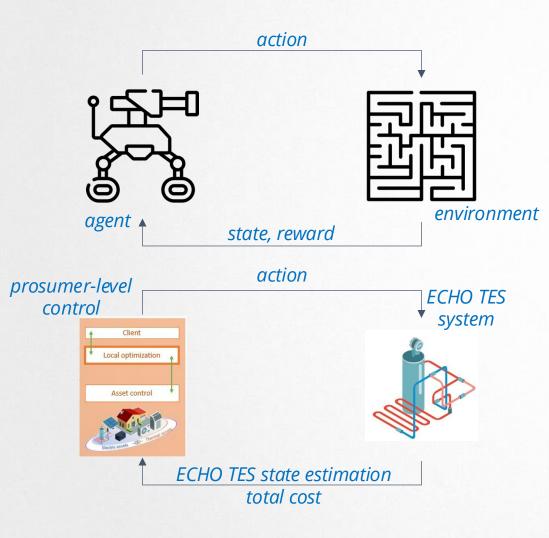
·····

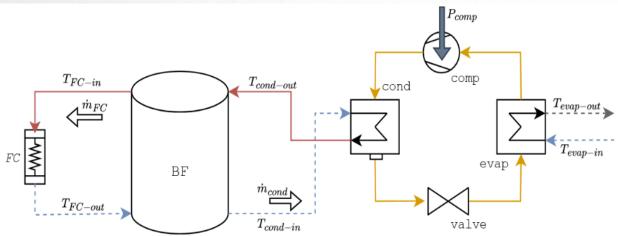


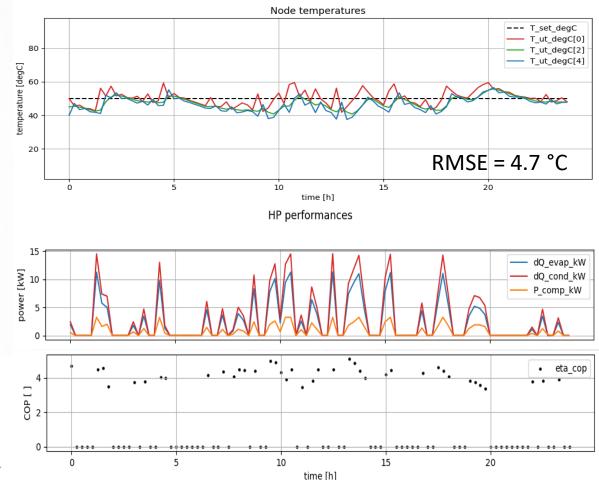
REINFORCEMENT LEARNING-BASED OPTIMIZATION OF AN HVAC SYSTEM


Work conducted within <u>Horizon ECHO project</u>: **E**fficient **C**ompact Modular T**H**ermal Energy St**O**rage System (2023-2026)

- Project aimed at developing novel modular, compact, high performances and Plug&Play thermal energy storage (TES) solutions for heating, cooling and domestic hot water (DHW) production
- TES systems enable electricity load shifting, supporting flexible energy systems
- ECHO TES based on thermo-chemical and phase changing materials
- Overall Heating Ventilation Air-Conditioning (HVAC) system consists of TES, heat pump, various tanks, pumps, valves and fan coils
- Its operation is quite complex a suitable control algorithm required





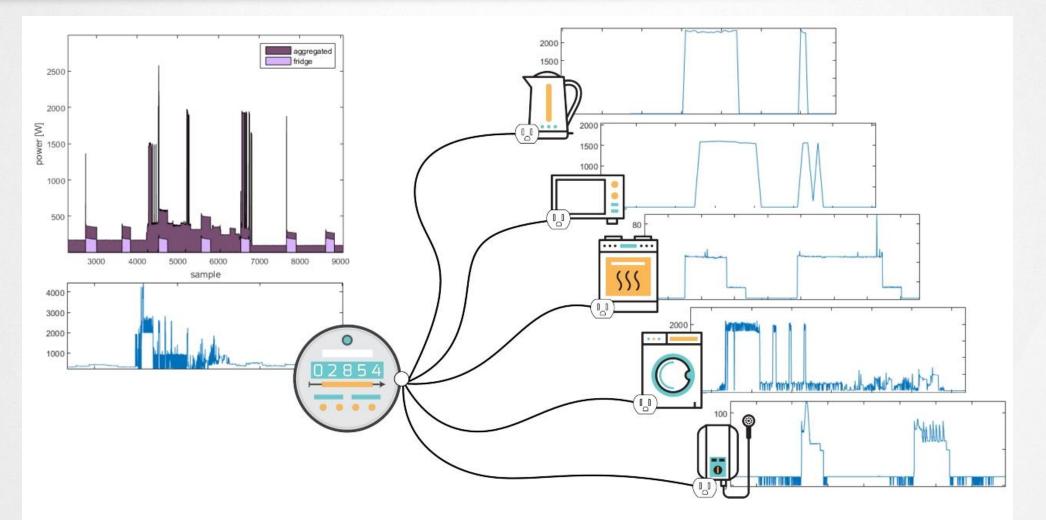


- Mid-level control objective to find the optimal asset schedule or optimal system state (e.g. TES charge/discharge/idle) to achieve some predefined goal (e.g. reduce costs):
 - agent is a mid-level control algorithm
 - environment is the ECHO TES system
- Minimization of the total cost of energy for 24-hour period with 15-minute time resolution
- Model of environment (ECHO TES system) necessary to train the RL – white-box modelling approach
- Various system measurements and forecasts were used:
 - Estimated thermal and electrical demand
 - Forecasted available RES (e.g. PV)
 - Current SoC of ECHO TES
 - Pricing scheme

- Deep Deterministic Policy Gradient (DDPG) as an adaptation of deep Q-network approach (DQN) for continuous space
 - Presence of not only critic network, but also actor network for modeling actor policy
- Temperature T_{FC-in} setpoint tracking through compressor power P_{comp} for ensuring a stable supply for users' heating
 - Maximizing reward, minimizing RMSE between T_{FC-in} and T_{set}

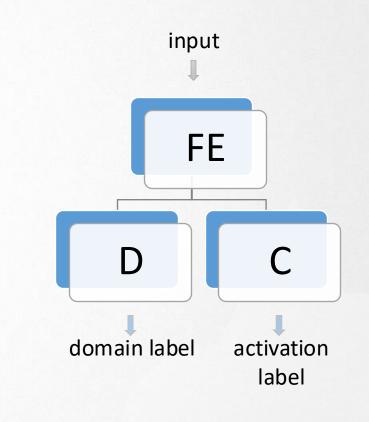
Jelić, D., Jelić, M., Stanković, K., Batić, M. Reinforcement Learning-Based Smart Temperature Control for Buffer Tanks in HVAC Systems. Presented on ICIST 2025; to be published in the corresponding Springer proceedings soon.

NON-INTRUSIVE LOAD MONITORING AND DISAGGREATION



Work conducted within <u>H2020 HESTIA</u>: Holistic dEmand response **S**ervices for European residen**TIA**I communities (2020-2024)

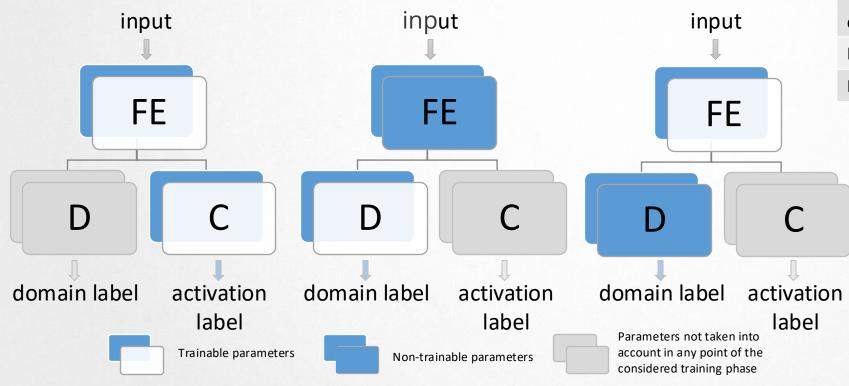
- Project aimed at developing a cost-effective solution for the next-generation demand-side response services.
- Power consumption disaggregation on the appliance level
- The goal was to develop automated model that can learn which appliances are ON over a period of time
- Non-Intrusive Load Monitoring (NILM)
- Generalization issue in model training required special attention



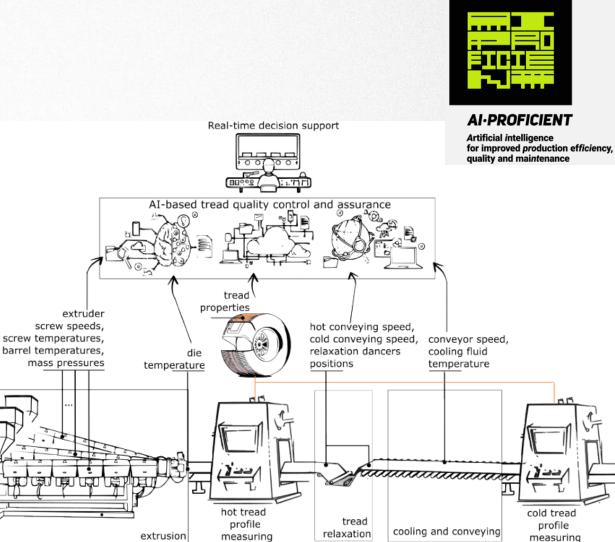
Pujić D, Tomašević N, Batić M. A Semi-Supervised Approach for Improving Generalization in Non-Intrusive Load Monitoring. Sensors. 2023; 23(3):1444. <u>https://doi.org/10.3390/s23031444</u>

- Pilot houses usually unequipped with appliance individual consumption measuring sensors
 - Labels (individual consumption) are available only in public data sets
- Training on one data set and testing on the other can significantly decrease the performance of the model

Domain adversarial neural network (DANN) approach


- designed to train the model so that it extracts the features that are relevant for the problem, not for the domain
- specific architecture and training process:
 - feature extractor (FE) for obtaining relevant features from aggregated consumption
 - classifier (C) for classification whether appliance is on or off depending on the extracted features
 - discriminator (D) to classify the domain of the input data (training or testing)

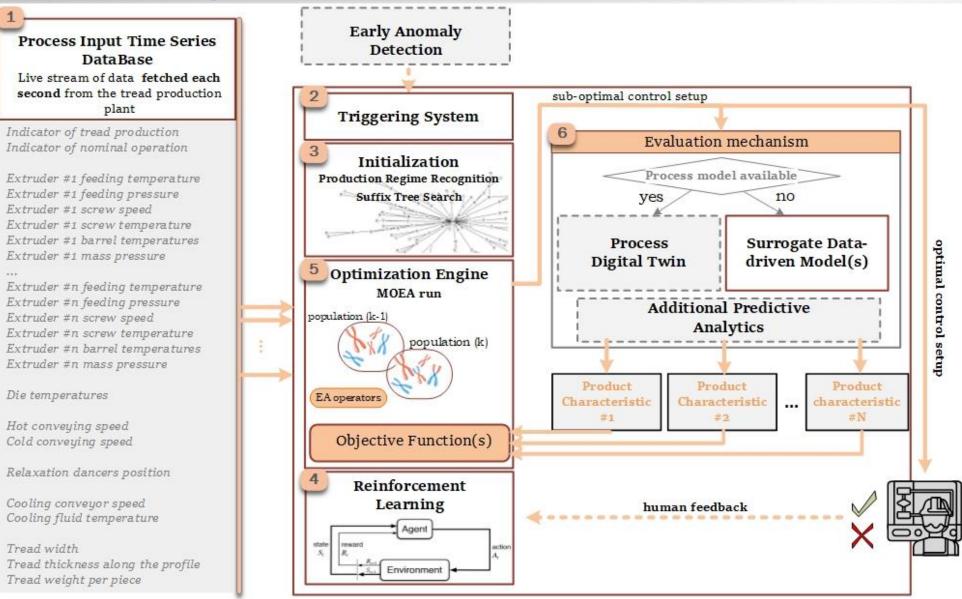
- NILM intended for high consuming appliances
- Methodology applied on four different appliances from REDD and UK-DALE data set


		REDD	REDD + UK-DALE	
		Seq2point	Seq2point	DANN
	Refrigerator	85%	59%	62%
	Tumble dryer	85%	80%	82%
	Dishwasher	88%	78%	79%
	Microwave	82%	89%	84%

SURROGATE DATA-DRIVEN OPTIMIZATION OF A MANUFACTURING PROCESS

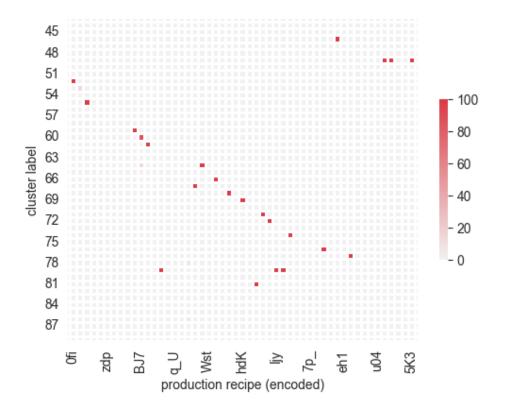
Surrogate Data-Driven Optimization of a Manufacturing Process

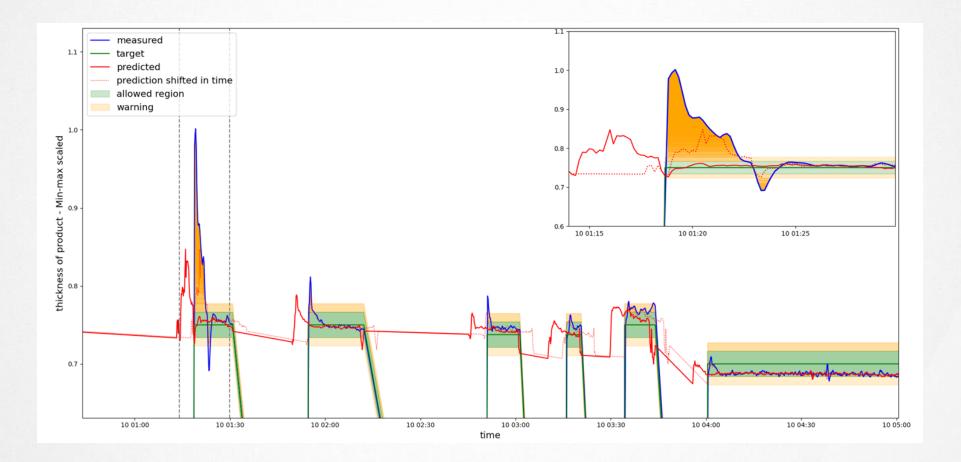
- Work conducted within <u>H2020 AI-PROFICIENT</u>: Artificial Intelligence for improved **PRO**duction ef*FICIE*ncy, quality and mai**NT**enance (2020-2023)
- Project aimed at developing proactive control strategies to improve manufacturing processes efficiency, quality and maintenance.
- **Tire tread production plant** one of the pilot sites
- Key product characteristics like thickness, width, and weight are continuously monitored
- Their control within tight quality limits required
- Hundred of different treads yearly produced
- A wide range of process conditions and product specifications
- Al-based Quality analysis and assurance tool



MIHAJLO PUPIN

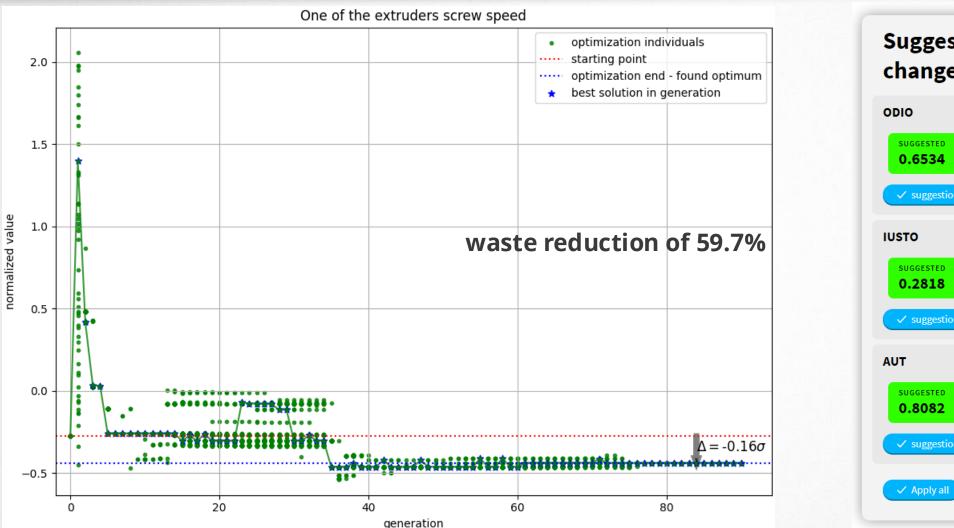
institut

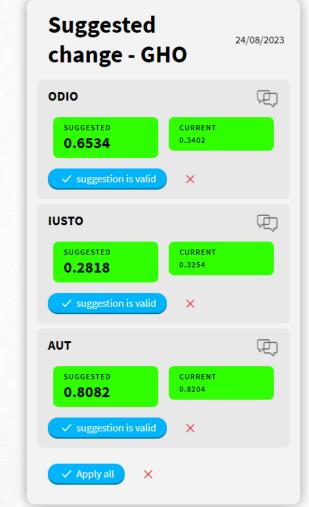

Surrogate Data-Driven Optimization of a Manufacturing Process


Surrogate Data-Driven Optimization of a Manufacturing Process

- Multi-objective evolutionary optimization based on decomposition (MOEA/D)
- Surrogate data-driven models (machine learining)
 - simulate how various process parameter combinations impact product quality.
- Production regime recognition prevents excessively long execution
 - optimization constrained to the local environment of a current working point
 - Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
 - Process modelling with suffix trees
 - Recipe-agnostic clustering (modified purity metric achieved **93.42%**)
- Optimization initialization based on Suffix tree search
 - Execution time reduction of up to 76.9%

Surrogate Data-Driven Optimization of a Manufacturing Process




 K. Stanković, D. Jelić, N. Tomašević, and A. Krstić, 'Manufacturing process optimization for real-time quality control in multi-regime conditions: Tire tread production use case', Journal of Manufacturing Systems, vol. 76, pp. 293–313, 2024, doi: <u>https://doi.org/10.1016/j.jmsy.2024.07.015</u>.

Surrogate Data-Driven Optimization of a Manufacturing Process

 K. Stanković, D. Jelić, N. Tomašević, and A. Krstić, 'Manufacturing process optimization for real-time quality control in multi-regime conditions: Tire tread production use case', Journal of Manufacturing Systems, vol. 76, pp. 293–313, 2024, doi: <u>https://doi.org/10.1016/j.jmsy.2024.07.015</u>.

OTHER APPLICATIONS

Other Applications

- Forecasters of different purposes PV production, wind turbine production, national electrical load, residential/commercial facilities electrical load
- Consumer energy efficiency benchmarking service
- Decision support system for mechanical ventilation in intensive care units
- Results recognized by EU Innovation Radar
- Innovative solutions, <u>https://project-sinergy.org/Innovative-solutions</u>
- Publications:
 - D. Pujić and N. Tomašević, "Hybrid ensemble neural network approach for photovoltaic production forecast," 2021 29th Telecommunications Forum (TELFOR), Belgrade, Serbia, 2021, pp. 1-4, doi: 10.1109/TELFOR52709.2021.9653369.
 - Esnaola-Gonzalez I, Jelić M, Pujić D, Diez FJ, Tomašević N. An Al-Powered System for Residential Demand Response. Electronics. 2021; 10(6):693. <u>https://doi.org/10.3390/electronics10060693</u>
 - F. Safaei et al., 'X-Vent: ICU Ventilation with Explainable Model-Based Reinforcement Learning', in ECAI 2024, IOS Press, 2024, pp. 4719–4726. doi: <u>10.3233/FAIA241069</u>.

CCEPT RECOMMENDAT

IC: 2,4 L/min/m² (♥0,6) SBP: 118 mmHg (▲ 20) DBP: 92 mmHg (♥ 8)

POSTPONE

THANK YOU FOR YOUR ATTENTION!

Katarina Stanković, MSc EE & CS Research and Development Associate <u>katarina.stankovic@pupin.rs</u>

